



# Active Object Detection With Knowledge Aggregation and Distillation from Large Models

**Dejie Yang**, Yang Liu<sup>\*</sup>

Wangxuan Institute of Computer Technology, Peking University



### **Overview**



# **Active Object Detection(AOD)**

- Detect the bounding box of the active object which is **undergoing state-change**
- For example: "carrot undergoing cutting", "pot undergoing cleaning"





### **Motivation**



# **Main Challenges of AOD**

(1) **The large intra-class visual appearance variance** for the same object under state changes e.g., carrot can be 'cutting using a knife', 'breaking by hands' or 'making into juice'

(2) **The subtle visual changes** between the instance undergoing state-change or not e.g., multiple distracting no-change instances of the same category

- 1. <u>cutting using a knife</u>
- 2. breaking by hands
- 3. making into juice

...





(1) Diverse interactions and large intra-class variance

(2)Subtle visual difference and multiple distractors



# Contributions

- (1) Introduce a Knowledge Aggregator that incorporates three-fold commonsense: plausible semantic interactions, fine-grained visual and spatial priors
- (2) To avoid the extra input at inference, propose a Teacher-Student Knowledge Distillation strategy
- (3) Our proposed framework achieves state-of-the-art performance on four datasets
  - 1. cutting using a knife
  - 2. breaking by hands
  - 3. making into juice

...





(1) Diverse interactions and large intra-class variance

(2)Subtle visual difference and multiple distractors



### Framework

- Vision Based Detector (Student): to detect active object without extra inputs, introduce a Transformer Detector
- Knowledge Aggregator: to collect the semantic-aware, visual-assisted and spatial-sensitive knowledge, large models(GPT and Diffusion Models) and Attentive Fusion module
- Knowledge-Enhance Detector(Teacher): to enrich the detection process with pertinent priors linked to active objects, a Transformer Decoder and a Detection Head



## **Proposed Method: KAD**



# **KAD: Knowledge Aggregator**

- Approach:
  - *Generate*: Semantic(Interactions by GPT), Vision(Images by Diffusion Models), Spatial(gt bbox)
  - Fuse: fuse the triple priors with attention layer
- construct triple complementary priors to guided the model to distinguish where to pay more attention.



#### **Attentive Fusion:**

$$\mathbf{T} = pool(selfattn([(\mathbf{t}_1, \mathbf{t}_2, ..., \mathbf{t}_p)])) \in \mathbb{R}^{1 \times d_t}$$
  

$$\dot{\mathbf{X}} \land (\mathbb{B} \otimes \mathbb{R})$$

**Prompt**: describe 10 interaction descriptions of [object] undergoing state change (including tools)

- 1. Carrot is being washed using a faucet.
- 2. Carrot is being peeled using a peeler.
- 3. Carrot is being sliced using a knife.
- 4. Carrot is being grated using a grater.
- 5. Carrot is being boiled using a pot.
- 6. Carrot is being steamed using a steamer.
- 7. Carrot is being roasted using an oven.
- 8. Carrot is being pureed using a blender.
- 9. Carrot is being juiced using a juicer.
- 10. Carrot is being fermented using a fermentation jar and salt.

#### **Generated Interactions**



**Generated Images** 



# **MRT: Knowledge Distillation**

- Approach:
  - *Parameters Sharing*: decoder and detection head
  - Knowledge Distillation: Feature and Attention Distillation
- Leverage the oracle query to facilitate accurate representation learning
- Allow the student to emulate the ability of teacher to navigate dynamic distractors





# **The Overall Objective**

- Teacher model(only train):  $\mathcal{L}_k = BCE(s, \hat{s}_t) + \lambda(\mathcal{L}_{giou}(b, \hat{b}_t) + ||b \hat{b}_t||_1)$
- Overall:  $L = L_v + L_k + \alpha L_{distill}$







### State-of-the-art performance on 4 benchmarks



Ego4D (Daily Activity)



**Epic-Kitchens** (Activity in Kitchens)



MECCANO (Toy Assembly)



**100DOH** (Daily Activity)



## **State-of-the-art performance on 4 benchmarks**

| -                 |             |                                                                                                                                                                                                                                      |           |             |  |
|-------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|--|
| Method            | Backhone    | Val-Set                                                                                                                                                                                                                              |           |             |  |
| wieuloa           | Backbolle   | Val-Se           AP         AP50           6.4         11.70           13.4         25.6           10.7         20.6           15.5         32.8           31.4         34.6           24.8         44.2           36.4         56.5 | AP50      | AP75        |  |
| CenterNet [37]    | DLA-34      | 6.4                                                                                                                                                                                                                                  | 11.70     | 6.10        |  |
| FasterRCNN [23]   | ResNet-101  | 13.4                                                                                                                                                                                                                                 | 25.6      | 12.5        |  |
| 100DOH-model [25] | ResNet-101  | 10.7                                                                                                                                                                                                                                 | 10.7 20.6 |             |  |
| DETR [1]          | ResNet-50   | <u>15.5</u> <u>32.8</u>                                                                                                                                                                                                              |           | <u>13.0</u> |  |
| KAD(ours)         | ResNet-50   | 31.4                                                                                                                                                                                                                                 | 34.6      | 28.9        |  |
| Intern Video [21] | Uniformer-L | 24.8                                                                                                                                                                                                                                 | 44.2      | 24.0        |  |
| Intern video[51]  | Swin-L      | <u>36.4</u> <u>56.5</u>                                                                                                                                                                                                              |           | <u>37.6</u> |  |
| KAD(ours)         | Swin-L      | 40.5                                                                                                                                                                                                                                 | 60.6      | 41.9        |  |

#### Ego4D

#### **Epic-Kitchens**

| Mathad           | Backhone    |                                                                        | Val-Set     |             |  |
|------------------|-------------|------------------------------------------------------------------------|-------------|-------------|--|
| Method           | Баскоопе    | AP<br><u>10.4</u><br><b>30.2</b><br>19.4<br><u>28.3</u><br><b>35.2</b> | AP50        | AP75        |  |
| DETR [1]         | ResNet-50   | <u>10.4</u>                                                            | <u>15.7</u> | <u>10.1</u> |  |
| KAD(ours)        | ResNet-50   | 30.2                                                                   | 30.1        | 22.5        |  |
| InternVideo[21]  | Uniformer-L | 19.4                                                                   | 38.7        | 17.0        |  |
| Intern video[51] | Swin-L      | Swin-L <u>28.3</u> <u>39</u>                                           |             | <u>27.2</u> |  |
| KAD(ours)        | Swin-L      | 35.2                                                                   | 44.1        | 32.5        |  |
|                  |             |                                                                        |             |             |  |

#### 100DOH

| Method            | Backbone   | AP75 | AP50 | AP25 |
|-------------------|------------|------|------|------|
| 100DOH-model [25] | ResNet-101 | 28.5 | 47.0 | 51.8 |
| PPDM[17]          | DLA-34     | 26.9 | 45.8 | 53.0 |
| HOTR[15]          | ResNet-50  | 29.3 | 49.3 | 57.8 |
| Seq-Voting[9]     | ResNet-101 | 29.9 | 53.0 | 57.2 |
| KAD(ours)         | ResNet-101 | 31.2 | 53.9 | 58.9 |

#### MECCANO

| Method            | Backbone   | AP75        | AP50        | AP25        |
|-------------------|------------|-------------|-------------|-------------|
| 100DOH-model [25] | ResNet-101 | -           | 20.2        | -           |
| Seq-Voting[9]     | ResNet-101 | <u>13.0</u> | <u>26.3</u> | <u>34.9</u> |
| KAD(ours)         | ResNet-101 | 14.4        | 28.8        | 36.2        |



# **Ablation Study of priors**

- Each type of prior shows a performance gain.
- Combining the priors achieves the best results.

| No. | Knowledge                   | AP   | AP50 | AP75 |
|-----|-----------------------------|------|------|------|
| 1   | VBD(baseline)               | 35.9 | 55.8 | 36.9 |
| 2   | VBD+visual                  | 36.0 | 56.6 | 37.2 |
| 3   | VBD+semantic                | 36.5 | 57.1 | 37.1 |
| 4   | VBD+spatial                 | 36.1 | 56.8 | 37.0 |
| 5   | VBD+spatial+semantic        | 37.9 | 58.1 | 38.3 |
| 6   | VBD+visual+semantic         | 39.8 | 59.3 | 40.0 |
| 7   | VBD+visual+spatial          | 38.5 | 58.0 | 38.5 |
| 8   | VBD+spatial+semantic+visual | 40.5 | 60.6 | 41.9 |



## **Ablation Study of distillations**

- potential of leveraging feature distillation to foster the acquisition of detection capabilities by the student model (Vision-Based Detector) from the teacher model (Knowledge-Enhanced Detector).
- synergistic potential of comprehensive distillation strategies that not only align features but also bridge the gap between attentions.

| No. | Distillation   | AP   | AP50 | AP75 |
|-----|----------------|------|------|------|
| 1   | VBD            | 35.9 | 55.8 | 36.9 |
| 2   | VBD w emb      | 38.3 | 59.3 | 41.2 |
| 3   | VBD w emb&attn | 40.5 | 60.6 | 41.9 |



### Ablation Study of number of generated priors

- the scene of a state change of an object may be diverse, so diverse descriptions and images are necessary.
- When the number of generated priors is large, it can bring more improvement

| No. | Number of descriptions | AP   | AP50 | AP75 | No. | Number of generated images | AP   | AP50 | AP75 |
|-----|------------------------|------|------|------|-----|----------------------------|------|------|------|
| 1   | No-description         | 37.3 | 57.8 | 37.7 | 1   | No-image                   | 37.9 | 58.1 | 38.3 |
| 2   | 1-description          | 37.5 | 57.9 | 37.7 | 2   | 1-image                    | 38.1 | 58.2 | 38.4 |
| 3   | 10-descriptions        | 40.5 | 60.6 | 41.9 | 3   | 10-images                  | 39.5 | 58.7 | 39.1 |
|     | •                      | •    |      |      | 4   | 100-images                 | 40.5 | 60.6 | 41.9 |



### Ablation Study of aggregation approaches

• Attentive operation has brought about 1.3% improvement on AP, which shows adaptive selection contributes to AOD.

| No. | method    | AP   | AP50 | AP75 |
|-----|-----------|------|------|------|
| 1   | max       | 39.2 | 59.5 | 39.6 |
| 2   | avg       | 39.1 | 59.2 | 39.7 |
| 3   | attentive | 40.5 | 60.6 | 41.9 |



# **Visual analysis**

• The incorporation of related priors to active objects, effectively guides the detection process towards active objects.



(a) active object: carrot.



(b) active object: food.

Yellow: previous best methods (InternVideo), Red: ours, Green: ground-truth



### **Attention Map Visualization**

• introduce prior knowledge of the active object to guide the model in inferring and locating the active object by analyzing potential interactions



(a) InternVideo Attention Map

(b) Our Attention Map

(c) Detection Results.

Attention Map: colors from **blue** to **red** means the attention from **less** to **more** 



# THANKS FOR YOUR ATTENTION

#### SCAN THE QR CODE FOR PROJECT DETAILS



Code Available https://github.com/idejie/KAD